Operator-Valued Herglotz Kernels and Functions of Positive Real Part on the Ball
نویسندگان
چکیده
منابع مشابه
Operator-valued Herglotz kernels and functions of positive real part on the ball
We describe several classes of holomorphic functions of positive real part on the unit ball; each is characterized by an operator-valued Herglotz formula. Motivated by results of J.E. McCarthy and M. Putinar, we define a family of weighted CauchyFantappiè pairings on the ball and establish duality relations between certain pairs of classes, and in particular we identify the dual of the positive...
متن کاملSome Applications of Operator-valued Herglotz Functions
We consider operator-valued Herglotz functions and their applications to self-adjoint perturbations of self-adjoint operators and self-adjoint extensions of densely defined closed symmetric operators. Our applications include model operators for both situations, linear fractional transformations for Herglotz operators, results on Friedrichs and Krein extensions, and realization theorems for cla...
متن کاملOn Matrix-valued Herglotz Functions
We provide a comprehensive analysis of matrix-valued Herglotz functions and illustrate their applications in the spectral theory of self-adjoint Hamiltonian systems including matrix-valued Schrödinger and Dirac-type operators. Special emphasis is devoted to appropriate matrix-valued extensions of the well-known Aronszajn-Donoghue theory concerning support properties of measures in their Nevanli...
متن کاملThe ring of real-valued functions on a frame
In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...
متن کاملOn Integral Operators with Operator-Valued Kernels
It is well known that solutions of inhomogeneous differential and integral equations are represented by integral operators. To investigate the stability of solutions, we often use the continuity of corresponding integral operators in the studied function spaces. For instance, the boundedness of Fourier multiplier operators plays a crucial role in the theory of linear PDE’s, especially in the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2009
ISSN: 1661-8254,1661-8262
DOI: 10.1007/s11785-009-0012-6